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Abstract

Point cloud registration, which aims to align two point clouds,
is a fundamental task in computer vision and robotics. How-
ever, the presence of outliers (mismatched correspondences)
in the point clouds makes the registration task challeng-
ing. Recently, a surge of interest has been observed in out-
lier rejection methods, formulating the outlier removal as
an inlier/outlier classification problem. Despite their suc-
cess, they are either memory-intensive, or time-consuming.
Moreover, they fail to consider high-level learned represen-
tations by solely relying on pairwise relationships, which
further restricts their performance. Hypergraph, a general-
ization of the graph, have proven effective in capturing
high-order relationships among objects. In this work, we
propose a novel outlier rejection method for 3D registra-
tion termed HyperDSC, a novel deep neural network that
explicitly models high-order spatial compatibility relation-
ships with hypergraphs. Firstly, we proposed Compatibility-
Aware Hypergraph Convolution(CAHConv) to learn high-
order relationships among correspondences with geometric
priors embedded. Built upon CAHConv, we further intro-
duce a novel Hierarchical Bi-directional Aggregation and
Fusion Block(HBAF) to learn and propagate learned repre-
sentations with clean-but-sparse 2nd-order compatibility hy-
pergraphs and nosiy-but-dense 1st-order compatibility hyper-
graphs. With superior ability on capturing high-order rela-
tionships, our method achieves state-of-the-art performance.
Extensive experiments on both outdoor and indoor datasets
demonstrate the effectiveness of our method.

Introduction
Point cloud registration, which aims to align two point
clouds, is a fundamental task in computer vision and
robotics. With the advent of powerful point cloud descrip-
tors(Qin et al. 2022) and deep learning techniques, the
performance of existing efforts has advanced significantly.
However, the presence of outliers (mismatched correspon-
dences) introduced by feature-matching still makes the task
challenging.

Recently, a surge of interest has been observed in out-
lier rejection methods, which formulate outlier removal
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Figure 1: Motivation. Representing high-order consistency
among correspondences with hypergraphs introducing fewer
relationships, improving the efficiency of feature learning,
compared to pairwise relationships of graphs.

as an inlier/outlier classification problem. Despite their
success, they suffer from expensive computational costs.
PointDSC(Bai et al. 2021) devises memory-intensive non-
local blocks, which has a quadratic complexity w.r.t the
number of correspondences. MAC(Zhang et al. 2023) rely
on maximal clique search, which has been proven to be NP-
hard and thus time-consuming, while FastMAC(Zhang et al.
2024) approximates maximal cliques with stochastic sam-
pling, trading off accuracy for efficiency. Moreover, existing
efforts fail to consider high-level representations, leveraging
only purely-geometric heuristics and pairwise relationships.
This partiality further restricts their performance.

As shown in Fig. 1, learning high-order consistency
among correspondences is the key to improving the perfor-
mance of outlier rejection(Chen et al. 2022b). Hypergraphs,
which is a generalization of graphs, have proven effective in
capturing high-order relationships among objects, whereas
spatial compatibility metrics are efficient in capturing geo-
metric priors. Based on these insights, we propose a novel
outlier rejection method for 3D registration termed Hyper-
DSC, a novel deep neural network that explicitly models
high-order spatial compatibility relationships with hyper-
graphs.

Specifically, we represent spatial-compatibility relation-
ships among correspondences with hypergraphs, avoiding



an overabundance of pairwise relationships. Hunter(Yao
et al. 2023) directly apply HGNN(Gao et al. 2022) con-
volutions for correspondence hypergraphs. However, they
neglect the geometric priors embedded in the correspon-
dences, which are crucial for point cloud registration. There-
fore, we proposed Compatibility-Aware Hypergraph Convo-
lution(CAHConv) to learn high-order relationships among
correspondences with geometric priors embedded. We em-
prically observe that hypergraphs constructed with spatial
compatibility (SC) metrics are noisy but enables feature
exchanges among abundant correspondences, while hyper-
graphs constructed with second-order spatial compatibility
(SC2) metrics are clean, but sometimes rejects potential in-
liers when too many outliers are present. To leverage the
advantages of both, we further introduce a novel Hierar-
chical Bi-directional Aggregation and Fusion Block(HBAF)
built upon CAHConvto learn and propagate learned repre-
sentations with clean-but-sparse 2nd-order compatibility hy-
pergraphs and nosiy-but-dense 1st-order compatibility hy-
pergraphs. Finally, we train the model with node-wise con-
trastive and classification learning to build a robust feature
space that facilitates outlier rejection.

Overall, our contributions are as follows:

• We propose a novel outlier rejection method for 3D reg-
istration termed HyperDSC, a novel deep neural network
that explicitly models high-order spatial compatibility re-
lationships with hypergraphs.

• CAHConv and HBAF are introduced for effective learn-
ing on hypergraphs. Node-wise contrastive and classifi-
cation learning are introduced for robust feature learning.

• Extensive experiments on 3DMatch(Zeng et al. 2017)
and KITTI Odometry demonstrate the effectiveness of
our method.

Related Works
Learning-based Registration Methods. Learning-based
registration methods fall into two categories: direct regis-
tration methods and correspondence-based methods. Direct
registration methods (Fu et al. 2021; Wang and Solomon
2019; Xu et al. 2021; Aoki et al. 2019; Huang, Mei, and
Zhang 2020) directly estimate the transformation between
two point clouds in an end-to-end way, either with soft cor-
respondences, or by regressing the transformation directly
from a global feature vector. However, such methods could
potentially fail in large-scale scenes. Correspondence-based
methods (Choy, Park, and Koltun 2019; Deng, Birdal, and
Ilic 2018) first extract correspondences between two point
clouds, and then estimate the transformation with robust
pose estimators. However, traditional robust estimators suf-
fer from slow convergence and are sensitive to outliers.
To address this, deep robust estimators (Choy, Dong, and
Koltun 2020; Bai et al. 2021; Lee et al. 2021) utilize deep
neural networks to reject outliers and compute the transfor-
mation. Although these methods require a training proce-
dure, they improve accuracy and speed. Xiong et al. (2024b)
is the first to introduce skeletal priors as geometric cues to
facilitate feature learning. Based on a similar insight of com-
bining low-level and high-level information, Xiong et al.

(2024a) further proposed a reliable unsupervised registra-
tion method by combining both low-level geometric cues
and high-level learned features.

Hypergraphs. The hypergraph is a generalization of
graph structures. Zhou, Huang, and Scholkopf (2006) first
proposed the concept of hypergraph learning in 2007,
extending the spectral clustering algorithm of undirected
graphs to hypergraph structures, and further introducing
spectral hypergraph embedding and transductive inference
on hypergraphs. In recent years, deep learning methods
based on hypergraphs have been widely studied. HGNN
(Yang et al. 2023) was the first to propose convolution op-
erations on hypergraphs from the spectral domain to learn
complex data associations. Bai, Zhang, and Torr (2021) in-
troduced attention mechanisms to hypergraph convolutional
networks to further enhance performance. HGNN+ (Gao
et al. 2022) is an extension of HGNN, improving spectral
domain convolution to spatial domain convolution for more
stable performance.

Method
Priliminaries
Problem Formulation. Given two point clouds P =
{pi ∈ R3|i = 1, . . . , N} and Q = {qi ∈ R3|i =
1, . . . ,M}, our goal is to align the two point clouds by es-
timating a rigid transformation T = {R, t}, where R ∈
SO(3) is a 3D rotation matrix and t ∈ R3 is a 3D transla-
tion vector. The transformation can be solved by:

min
R,t

∑
(pxi

,qyi
)∈C⋆

∥Rpxi
+ t− qyi

∥2, (1)

where C⋆ denotes the set of correspondences between two
point clouds P and Q. In reality, C⋆ is usually unknown.
Hence, we need to establish accurate correspondences C be-
tween two point clouds for a good transformation. Typically,
we retreive a noisy set of correspondences C′

, and then re-
move outliers to obtain its clean subset C ⊂ C′

.

Hypergraph. A hypergraph is defined as G = (V, E ,W),
where V represents the set of vertices, E denotes the set of
hyperedges, and W assigns weights to these hyperedges. In
analogy to simple graphs, the structure of a hypergraph is of-
ten captured by its incidence matrix H ∈ 0, 1|V|×|E|, where
H(vi, ej) equals 1 if the vertex vi is connected to the hy-
peredge ej , and 0 otherwise. The degree of a hyperedge ej

and a vertex vi are then given by D(ej) =
∑|V |

i=1 H(vi, ej)

and D(vi) =
∑|E|

j=1 W(ej)H(vi, ej), respectively. Unlike
edges in simple graphs, which only connect two vertices at a
time, hyperedges can link more than two vertices, allowing
them to compactly represent a hypothesis by connecting the
vertices that correspond to data points in a sampled minimal
subset. When the vertices represent data points, hyperedges
provide an elegant way to capture correspondences. There-
fore, different from existing efforts using graphs(Zhang et al.
2023, 2024) to represent spatial compatibility, we resort to
hypergraphs, thereby capturing high-order relationships and
avoiding the introduction of too many pairwise relation-
ships.



Pipeline
The overall pipeline of HyperDSC is illustrated in Fig. 2.
Given input correspondences, we first construct hyperedges
by leveraging both first and second-order spatial compat-
ibility metrics. Then, the proposed novel module, HBAF,
is interleaved N times to learn high-order relationships
among correspondences with geometric priors embedded.
The HBAF module aggregates the input features with two
stand-alone CAHConv blocks, one for 2nd-order compati-
bility hypergraphs and the other for 1st-order compatibil-
ity hypergraphs. Then, we design a selective fusion mech-
anism to fuse the learned features from the two CAHConv
blocks, leveraging the advantages of both types of hyper-
graphs. Finally, we employ an MLP to predict the initial
correspondence confidence, and then post-process the cor-
respondences to obtain the final transformation. The net-
work is end-to-end trained with the proposed node-wise con-
trastive and classification learning.

Hypergraph Construction
We construct hyperedges by leveraging length consistency.
Given a correspondence set C = {(xi, yj)}N , we first com-
pute the BLE matrix. For each correspondence Ci, we iden-
tify the correspondences that exhibit stronger spatial consis-
tency with C and treat them as its partners. The set of these
partners is defined as P (Ci) = {Cj | dij < θ}. From this
partner set, we randomly select k data points to form a hy-
peredge E(Ci). This process is repeated for each correspon-
dence, resulting in a hypergraph where the vertices are V =
C and the hyperedges are E = {E(Ci) | i = 1, 2, 3, . . . , N}.
We assign the initial correspondence feature (i,j)FC =
Cat (xi, yj ,Fi,Fj) to a correspondence (i,j)C = (xi, yj).

Hypergraph Feature Embedding
Compatibility-Aware Hypergraph Convolution. Exist-
ing efforst, such as Hunter(Yao et al. 2023), directly ap-
ply HGNN(Gao et al. 2022) for learning on correspon-
dence hypergraphs. However, they neglect the geometric
priors embedded in the correspondences, which are crucial
for learning high-order relationships. To address this, we
propose a novel Compatibility-Aware Hypergraph Convo-
lution(CAHConv) to learn high-order relationships among
correspondences with geometric priors embedded.

Given a compatibility matrix Cij = 1 − (dij/σd)
2 where

d = |∥pi−qi∥2−∥pj −qj∥2| is the length consistency be-
tween two correspondences and σd is a hyperparameter, We
compute hyperedge-wise geometric embedding Ek for hy-
peredge Ek by aggregating the compatibility of its vertices:

Ek =

|V|∑
i=1

|V|∑
j=i

Hij ·Hjk · Cij
D(Ek)

(2)

Then, the input feature is updated as Fi =∑|V|
j=1 αijFjW, where W is a learnable weight ma-

trix, and αij is computed as:

αij =
1√

D(Vi)D(Vj)

|E|∑
k=1

HikHjkEk

D(Ek)
(3)

Hierarchical Bi-directional Aggregation and Fusion
Block. Built-upon CAHConv, we further introduce a novel
HBAF to learn and propagate learned representations with
both 2nd-order compatibility hypergraphs and 1st-order com-
patibility hypergraphs.

To aggregates features from both types of hypergraphs, it
is crucial to decide how features from different hypergraphs
are fused. Drawing inspiration from SKNet(Li et al. 2019),
we propose a selective fusion mechanism, as is depicted in
Fig. 2. Specifically, we first compute the aggregated features
F1 and F2 from both hypergraphs with the proposed CAH-
Conv. Then, the attention weights A ∈ R2 for respective ag-
gregated features are computed by applying a channel-wise
MLP FA to their summation followed by a softmax opera-
tion.

A = softmax(FA(F1 + F2)) (4)

Finally, we aggregate the resultant features as the weighted
summation of the input:

F = A1F1 +A2F2 (5)

The proposed HBAF is interleaved N times to form the
hypergraph feature embedding module. After that, an MLP
is employed to predict the initial correspondence confidence
{vi} using the learned features.

Post-Processing
Based on the learned features and predicted confidences,
we employed Seed Selection, Neural Spectral Matching
and Hypothesis Selection from PointDSC(Bai et al. 2021)
to obtain the final correspondences. Then, we estimate the
transformation T using the final correspondences based on
weighted SVD(Choy, Dong, and Koltun 2020).

Loss
Node-wise Contrastive Learning. Contrastive learning is
widely used (Qin et al. 2022; Huang et al. 2021) to train
registration models. However, existing learned pose estima-
tors(Bai et al. 2021) mainly formulate outlier rejection as a
classification problem and adopt a cross-entropy loss. With-
out direct feature-space supervision, the learned representa-
tions may not be optimal for outlier rejection, and the train-
ing may be unstable. To address this, we opt to facilitate the
learning of robust feature representations in a metric learn-
ing manner. We thus propose a novel node-wise contrastive
learning strategy. To the best of our knowledge, we are the
first to introduce node-wise contrastive learning for outlier
rejection in 3D registration.

Specifically, we encourage the learned representations of
inliers to be close to each other and far from outliers, and
vice versa. For input correspondences C = {ci} with pre-
dicted labels b and associated features F, we define the pair-
wise cluster label matrix M = {Mij} as:

Mij =

{
1, if bi = bj ,
0, otherwise. (6)

Then, we adopt the Circle Loss(Sun et al. 2020) to learn the
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Figure 2: The Overall Pipeline of HyperDSC. We first construct 1st- and 2nd-order hyperedges. Then, the proposed HBAF-
module learns high-order relationships among correspondences with geometric priors embedded, which aggregates the features
with two stand-alone CAHConv for each hypergraph and fuse the features with a selective fusion mechanism. Finally, we post-
process the correspondences using learned features and estimate the resultant transformation.

feature representations:

Lc=
1

|C|
∑
Ci∈C

log[1+
∑

Mij=1

eβ
i,j
p (dj

i−∆p)·
∑

Mik=0

eβ
i,k
n (∆n−dk

i )]

(7)
where dji = ∥Fi −Fj∥2 is the distance in the feature space,
and weights βi,j

p = γ(dji − ∆p) and βi,k
n = γ(δn − dki )

are used to highlight the patches with high overlap ratio. We
empirically set hyperparameters ∆p = 0.1 and ∆n = 1.4.
Circle Loss provides a more effective mechanism for select-
ing and prioritizing informative pairs, improving the gener-
alization of learned embeddings.

Node-wise Classification Learning. To facilitate the clas-
sification prediction of inlier/outlier labels, we also train the
model with a node-wise classification loss. Cross-Entropy
Loss, despite its simplicity and wide adoption(Bai et al.
2021), may not be optimal for outlier rejection. In inlier/out-
lier classification, a large portion of correspondences are
easy to classify, while the remaining are hard to distin-
guish. Due to the imbalanced nature of the task in regard of
hard/easy samples, the model may be biased towards easy
samples, thereby hindering effective training.

Drawing insight existing efforts, we resort to Focal
Loss(Ross and Dollár 2017) to address the issue, which
highlights hard samples in a self-adaptive manner:

Lf=− 1

|C|
∑
Ci∈C

αt(1− pt)
γ log(pt), , (8)

where α and γ are hyperparameters, and pt is the model’s
predicted probability for the correct class. Focal loss dynam-
ically scales down the loss for well-classified examples, fo-
cusing on hard examples that the model struggles with.

Loss Aggregation. The final loss is a weighted sum of the
node-wise contrastive loss and the node-wise classification

loss:

L = λLc + (1− λ)Lf , (9)

where λ is a hyperparameter that balances the two losses.

Experiments

Experiment Settings

Datasets We mainly evaluate the proposed method on
two representative and challenging public datasets, namely
3DMatch and KITTI Odometry. Both datasets adhere to of-
ficial splits for training and testing. The evaluation protocol
follows the standard settings of PointDSC(Bai et al. 2021).
Following Predator(Huang et al. 2021), we also evaluate our
method on the 3DLoMatch benchmark dataset, which is a
low-overlap challenging subset of the 3DMatch dataset.

Baselines For traditional methods, we mainly compare
our method with FGR(Zhou, Park, and Koltun 2016),
SM(Leordeanu and Hebert 2005), RANSAC(Fischler and
Bolles 1981), TEASER++(Yang, Shi, and Carlone 2020),
SC2-PCR(Chen et al. 2022b). For learning-based methods,
we compare with DGR(Choy, Dong, and Koltun 2020),
PointDSC(Bai et al. 2021), VBReg(Jiang et al. 2023), and
DHVR(Lee et al. 2021). To retreive the initial input corre-
spondences, we use FCGF(Zeng et al. 2017) for 3DMatch
descriptors and FPFH(Rusu, Blodow, and Beetz 2009) de-
scriptors for KITTI Odometry.

Implementation Details We implement our method with
PyTorch and train the model on a single NVIDIA RTX 3090
GPU. We use the Adam optimizer with an initial learning
rate of 1e − 4 and a batch size of 16. The model is trained
for 100 epochs with a learning rate decay of 0.1.



Table 1: Comparison with State-of-the-Arts. Quantitative results on the
KITTI Odometry and 3DMatch datasets.

Method KITTI(FPFH) 3DMatch(FCGF)

RR% RRE(◦) RTE(m) RR% RRE(◦) RTE (m)

FGR 1.26 1.69 47.18 79.17 2.93 8.56
SM 75.50 0.66 15.01 86.57 2.29 7.07
RANSAC 89.37 1.22 25.88 91.50 2.49 7.54
TEASER++ 64.14 1.04 14.85 85.77 2.73 8.66
DGR 73.69 1.67 34.74 91.30 2.40 7.48
DHVR – – – 89.40 2.19 6.95
SC2-PCR 97.84 0.39 9.09 93.10 2.04 6.53
PointDSC 98.20 0.58 7.27 92.42 2.05 6.49
VBReg 98.92 0.32 7.17 93.53 2.04 6.49

HyperDSC 99.46 0.32 7.17 93.71 2.04 6.49

Table 2: RR% with different numbers of
correspondences on 3DLoMatch benchmark
dataset

Model 5000 1000 250

FGR 18.6 16.9 12.4
SM 32.4 31.4 23.5
RANSAC 37.6 35.9 25.9
TEASER++ 42.8 39.5 25.7
DHVR 50.4 46.4 34.6
SC2 PCR 57.4 51.8 36.2
TR DE 49.5 48.4 34.3
PointDSC 55.8 46.8 26.7
VBReg 58.3 52.9 34.5

HyperDSC 58.7 54.86 36.2

Comparison With State-of-the-Art Methods
Evaluation on KITTI Odometry and 3DMatch. We first
compare our method with state-of-the-arts on two repre-
sentative datasets, KITTI Odometry and 3DMatch. Fol-
lowing existing efforts(Fu et al. 2021; Bai et al. 2021),
for KITTI Odometry, we use FPFH descriptors, while for
3DMatch, we use FCGF descriptors. As shown in Table 1,
our method achieves state-of-the-art performance on both
datasets, demonstrating superior effectiveness in both indoor
and outdoor scenarios.

Evaluation on 3DLoMatch 3DLoMatch is a low-overlap
(10% 30%) challenging subset of the 3DMatch dataset. We
additionally compare with TR DE(Chen et al. 2022a), which
is a traditional method. The registration recall (RR) with dif-
ferent numbers of correspondences is shown in Table 2. Our
method consistently outperforms existing efforts, demon-
strating the effectiveness and robustness of our method in
challenging scenarios.

Analysis
Ablation Study of Modules. We first validate the ef-
fectiveness of proposed CAHConv and HBAF. We take
SC-NonLocal from PointDSC(Bai et al. 2021) and VB-
NonLocal from VBReg(Jiang et al. 2023) as baselines to
highlight the effectiveness of our method. Our method con-
sistently outperforms the baselines on KITTI dataset, as
shown in Table 3. Using HBAF outperforms other fusion
strategies such as concatenation and summation, demon-
strating the superiority of our selective mechanism.

Ablation Study of Losses. We also validate the loss
choices by comparing with alternative configurations using
standard cross-entropy loss and Spectral Matching Loss(Bai
et al. 2021). We report RR% on 3DLoMatch benchmark in
Table 4. With the proposed node-wise contrastive and clas-
sification learning, our method learns robust and discrimina-
tive feature representations, outperforming the alternatives.
We find that the Spectral Matching Loss can be regarded as
a special (and weakened) case of contrastive loss, which will
be further investigated in future work.

Table 3: Ablation Study of Modules. HBAF(Sum) and
HBAF(Cat) denote the alternative configurations to replace
the selective fusion strategies of HBAF with Summation and
Concatenation.

Configuration RR% F1 Time (s)

SC-NonLocal 98.20 92.71 6.20
VB-NonLocal 98.92 92.69 8.20

HBAF(Sum) 98.75 92.21 3.48
HBAF(Cat) 99.10 93.26 3.48

HBAF 99.46 93.43 3.84

Table 4: Ablation Study of Losses. CE denotes cross-
entropy loss, FO denotes focal loss, SPM denotes spectral
matching loss, and CL denotes circle loss.

CE FO SPM CL RR%

✓ ✓ 54.74
✓ ✓ 54.80

✓ ✓ 54.80

✓ ✓ 54.86

Conclusion

In this work, we propose a novel outlier rejection method for
3D registration termed HyperDSCto explicitly model high-
order spatial compatibility with hypergraphs. We proposed
Compatibility-Aware Hypergraph Convolution(CAHConv)
to learn high-order relationships among correspondences
with geometric priors embedded. Built upon that, we intro-
duce a novel Hierarchical Bi-directional Aggregation and
Fusion Block(HBAF) to learn and propagate learned rep-
resentations with different compatibility hypergraphs. Ex-
tensive experiments on both outdoor and indoor datasets
demonstrate the effectiveness of our method.
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